Detail Cantuman
Pencarian SpesifikJurnal Internasional
Wind Speed Forecasting Using Recurrent Neural Networks And Long Short Term Memory
Abstract
Wind is a natural phenomenon that plays an essential role in various aspects of human life, including the spread of pests in plants. This variable is right for regions often hit by strong winds. The development of machine learning technology now makes predictions of wind speed to anticipate future impacts. This study proposes wind speed predictions using Recurrent Neural Network (RNN) with Long Short Term Memory (LSTM). The data used was obtained from the Nganjuk Meteorology and Geophysics Agency (BMKG), East Java from 2008 to 2017. The results showed that the use of the Adam model could provide 92.7% accuracy for training data and 91.6% for new data.
Keywords:wind speed; forecasting; recurrent neural networks; LSTM;
Ketersediaan
Tidak ada salinan data
Informasi Detail
| Judul Seri |
-
|
|---|---|
| No. Panggil |
-
|
| Penerbit | Fisika Teknik ITB : Bandung., 2019 |
| Deskripsi Fisik |
-
|
| Bahasa |
English
|
| ISBN/ISSN |
978-1-7281-0915-2
|
| Klasifikasi |
NONE
|
| Tipe Isi |
text
|
| Tipe Media |
-
|
|---|---|
| Tipe Pembawa |
-
|
| Edisi |
(ICA), 25-26 July 2019
|
| Subjek |
-
|
| Info Detail Spesifik |
-
|
| Pernyataan Tanggungjawab |
-
|
Versi lain/terkait
Tidak tersedia versi lain
Lampiran Berkas
Informasi
Akses Katalog Publik Daring - Gunakan fasilitas pencarian untuk mempercepat penemuan data katalog






