Image of Wind Speed Forecasting Using Recurrent Neural Networks And Long Short Term Memory

Jurnal Internasional

Wind Speed Forecasting Using Recurrent Neural Networks And Long Short Term Memory



Abstract

Wind is a natural phenomenon that plays an essential role in various aspects of human life, including the spread of pests in plants. This variable is right for regions often hit by strong winds. The development of machine learning technology now makes predictions of wind speed to anticipate future impacts. This study proposes wind speed predictions using Recurrent Neural Network (RNN) with Long Short Term Memory (LSTM). The data used was obtained from the Nganjuk Meteorology and Geophysics Agency (BMKG), East Java from 2008 to 2017. The results showed that the use of the Adam model could provide 92.7% accuracy for training data and 91.6% for new data.

Keywords:wind speed; forecasting; recurrent neural networks; LSTM;


Ketersediaan

Tidak ada salinan data


Informasi Detail

Judul Seri
-
No. Panggil
-
Penerbit Fisika Teknik ITB : Bandung.,
Deskripsi Fisik
-
Bahasa
English
ISBN/ISSN
978-1-7281-0915-2
Klasifikasi
NONE
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
(ICA), 25-26 July 2019
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain


Lampiran Berkas



Informasi


Akses Katalog Publik Daring - Gunakan fasilitas pencarian untuk mempercepat penemuan data katalog